Machine Learning (84)

View options:

Find narratives by ethical themes or by technologies.

FILTERreset filters
Themes
  • Privacy
  • Accountability
  • Transparency and Explainability
  • Human Control of Technology
  • Professional Responsibility
  • Promotion of Human Values
  • Fairness and Non-discrimination
Show more themes
Technologies
  • AI
  • Big Data
  • Bioinformatics
  • Blockchain
  • Immersive Technology
Show more technologies
Additional Filters:
  • Media Type
  • Availability
  • Year
    • 1916 - 1966
    • 1968 - 2018
    • 2019 - 2069
  • Duration
  • 5 min
  • Gizmodo
  • 2021
image description
Bots Reportedly Helped Fuel GameStonks Hype on Facebook, Twitter, and Other Platforms

Thorough investigation led to the conclusion that bots played a role in the economic disruption of GameStop stocks in early 2021. Essentially, the automated accounts aided in the diffusion of materials promoting the purchase and maintenance of GameStop stocks as a ploy to act as a check on wealthy hedge fund managers who bet that the stock would crash. The wholistic effect of these bots in this specific campaign, and thus a measure of how bots may generally be used to cause economic disruption in online markets through interaction with humans, remains hard to read.

  • Gizmodo
  • 2021
  • 3 min
  • CNN
  • 2021
image description
Microsoft patented a chatbot that would let you talk to dead people. It was too disturbing for production

The prominence of social data on any given person afforded by digital artifacts, such as social media posts and text messages, can be used to train a new algorithm patented by Microsoft to create a chatbot meant to imitate that specific person. This technology has not been released, however, due to its harrowing ethical implications of impersonation and dissonance. For the Black Mirror episode referenced in the article, see the narratives “Martha and Ash Parts I and II.”

  • CNN
  • 2021
  • 7 min
  • New York Times
  • 2018
image description
Facial Recognition Is Accurate, if You’re a White Guy

This article details the research of Joy Buolamwini on racial bias coded into algorithms, specifically facial recognition programs. When auditing facial recognition software from several large companies such as IBM and Face++, she found that they are far worse at properly identifying darker skinned faces. Overall, this reveals that facial analysis and recognition programs are in need of exterior systems of accountability.

  • New York Times
  • 2018
  • 7 min
  • The Verge
  • 2020
image description
What a machine learning tool that turns Obama white can (and can’t) tell us about AI bias

PULSE is an algorithm which can supposedly determine what a face looks like from a pixelated image. The problem: more often than not, the algorithm will return a white face, even when the person from the pixelated photograph is a person of color. The algorithm works through creating a synthetic face which matches with the pixel pattern, rather than actually clearing up the image. It is these synthetic faces that demonstrate a clear bias toward white people, demonstrating how institutional racism makes its way thoroughly into technological design. Thus, diversity in data sets will not full help until broader solutions combatting bias are enacted.

  • The Verge
  • 2020
  • 10 min
  • Gizmodo
  • 2021
image description
Developing Algorithms That Might One Day Be Used Against You

Physicist Brian Nord, who learned about deep learning algorithms through his research on the cosmos, warns against how developing algorithms without proper ethical sensibility can lead to these algorithms having more negative impacts than positive ones. Essentially, an “a priori” or proactive approach to instilling AI ethical sensibility, whether through review institutions or ethical education of developers, is needed to guard against privileged populations using algorithms to maintain hegemony.

  • Gizmodo
  • 2021
  • 6 min
  • CBS News
  • 2021
image description
Facebook algorithm called into question after whistleblower testimony calls it dangerous

In light of the recent allegations of Facebook whistleblower Frances Haugen that the platform irresponsibly breeds division and mental health issues, AI Specialist Karen Hao explains how Facebook’s “algorithm(s)” serve or fail the people who use them. Specifically, the profit motive and a lack of exact and comprehensive knowledge of the algorithm system prevents groundbreaking change from being made.

  • CBS News
  • 2021
Load more