AI (119)
Find narratives by ethical themes or by technologies.
FILTERreset filters-
- 6 min
- Wired
- 2019
Spreading of harmful content through Youtube’s AI recommendation engine algorithm. AI helps create filter bubbles and echo chambers. Limited user agency to be exposed to certain content.
- Wired
- 2019
-
- 6 min
- Wired
- 2019
The Toxic Potential of YouTube’s Feedback Loop
Spreading of harmful content through Youtube’s AI recommendation engine algorithm. AI helps create filter bubbles and echo chambers. Limited user agency to be exposed to certain content.
How much agency do we have over the content we are shown in our digital artifacts? Who decides this? How skeptical should we be of recommender systems?
-
- 5 min
- Business Insider
- 2020
This article tells the story of Timnit Gebru, a Google employee who was fired after Google refused to take her research on machine learning and algorithmic bias into full account. She was terminated hastily after sending an email asking Google to meet certain research-based conditions. Gebru is a leading expert in the field of AI and bias.
- Business Insider
- 2020
-
- 5 min
- Business Insider
- 2020
One of Google’s leading AI researchers says she’s been fired in retaliation for an email to other employees
This article tells the story of Timnit Gebru, a Google employee who was fired after Google refused to take her research on machine learning and algorithmic bias into full account. She was terminated hastily after sending an email asking Google to meet certain research-based conditions. Gebru is a leading expert in the field of AI and bias.
How can tech monopolies dismiss recommendations to make their technologies more ethical? How do bias ethicists such as Gebru get onto a more unshakeable platform? Who is going to hold tech monopolies more accountable? Should these monopolies even by trying to fix their current algorithms, or might it be better to just start fresh?
-
- 10 min
- The Washington Post
- 2021
The academic Philip Agre, a computer scientist by training, wrote several papers warning about the impacts of unfair AI and data barons after spending several years studying the humanities and realizing that these perspectives were missing from the field of computer science and artificial intelligence. These papers were published in the 1990s, long before the data-industrial complex and the normalization of algorithms in the everyday lives of citizens. Although he was an educated whistleblower, his predictions were ultimately ignored, the field of artificial intelligence remaining closed off from outside criticism.
- The Washington Post
- 2021
-
- 10 min
- The Washington Post
- 2021
He predicted the dark side of the Internet 30 years ago. Why did no one listen?
The academic Philip Agre, a computer scientist by training, wrote several papers warning about the impacts of unfair AI and data barons after spending several years studying the humanities and realizing that these perspectives were missing from the field of computer science and artificial intelligence. These papers were published in the 1990s, long before the data-industrial complex and the normalization of algorithms in the everyday lives of citizens. Although he was an educated whistleblower, his predictions were ultimately ignored, the field of artificial intelligence remaining closed off from outside criticism.
Why are humanities perspectives needed in computer science and artificial intelligence fields? What would it take for data barons and/or technology users to listen to the predictions and ethical concerns of whistleblowers?
-
- 7 min
- Chronicle
- 2021
The history of AI contains a pendulum which swings back and forth between two approaches to artificial intelligence; symbolic AI, which tries to replicate human reasoning, and neural networks/deep learning, which try to replicate the human brain.
- Chronicle
- 2021
-
- 7 min
- Chronicle
- 2021
Artificial Intelligence Is a House Divided
The history of AI contains a pendulum which swings back and forth between two approaches to artificial intelligence; symbolic AI, which tries to replicate human reasoning, and neural networks/deep learning, which try to replicate the human brain.
Which approach to AI (symbolic or neural networks) do you believe leads to greater transparency? Which approach to AI do you believe might be more effective in accomplishing a certain goal? Does one approach make you feel more comfortable than the other? How could these two approaches be synthesized, if at all?
-
- 7 min
- MIT Tech Review
- 2020
This article examines several case studies from the year of 2020 to discuss the widespread usage, and potential for limitation, of facial recognition technology. The author argues that its potential for training and identification using social media platforms in conjunction with its use by law enforcement is dangerous for minority groups and protestors alike.
- MIT Tech Review
- 2020
-
- 7 min
- MIT Tech Review
- 2020
Why 2020 was a pivotal, contradictory year for facial recognition
This article examines several case studies from the year of 2020 to discuss the widespread usage, and potential for limitation, of facial recognition technology. The author argues that its potential for training and identification using social media platforms in conjunction with its use by law enforcement is dangerous for minority groups and protestors alike.
Should there be a national moratorium on facial recognition technology? How can it be ensured that smaller companies like Clearview AI are more carefully watched and regulated? Do we consent to having or faces identified any time we post something to social media?
-
- 5 min
- Venture Beat
- 2021
Relates the story of Google’s inspection of Margaret Mitchell’s account in the wake of Timnit Gebru’s firing from Google’s AI ethics division. With authorities in AI ethics clearly under fire, the Alphabet Worker’s Union aims to ensure that workers who can ensure ethical perspectives of AI development and deployment.
- Venture Beat
- 2021
-
- 5 min
- Venture Beat
- 2021
Google targets AI ethics lead Margaret Mitchell after firing Timnit Gebru
Relates the story of Google’s inspection of Margaret Mitchell’s account in the wake of Timnit Gebru’s firing from Google’s AI ethics division. With authorities in AI ethics clearly under fire, the Alphabet Worker’s Union aims to ensure that workers who can ensure ethical perspectives of AI development and deployment.
How can bias in tech monopolies be mitigated? How can authorities on AI ethics be positioned in such a way that they cannot be fired when developers do not want to listen to them?