Machine Learning (84)

View options:

Find narratives by ethical themes or by technologies.

FILTERreset filters
Themes
  • Privacy
  • Accountability
  • Transparency and Explainability
  • Human Control of Technology
  • Professional Responsibility
  • Promotion of Human Values
  • Fairness and Non-discrimination
Show more themes
Technologies
  • AI
  • Big Data
  • Bioinformatics
  • Blockchain
  • Immersive Technology
Show more technologies
Additional Filters:
  • Media Type
  • Availability
  • Year
    • 1916 - 1966
    • 1968 - 2018
    • 2019 - 2069
  • Duration
  • 5 min
  • MIT Tech Review
  • 2020
image description
The Year Deepfakes Went Mainstream

With the surge of the coronavirus pandemic, the year 2020 became an important one in terms of new applications for deepfake technology. Although a primary concern of deepfakes is their ability to create convincing misinformation, this article describes other uses of deepfake which center more on entertaining, harmless creations.

  • MIT Tech Review
  • 2020
  • 12 min
  • Wired
  • 2018
image description
How Cops Are Using Algorithms to Predict Crimes

This video offers a basic introduction to the use of machine learning in predictive policing, and how this disproportionately affects low income communities and communities of color.

  • Wired
  • 2018
  • 6 min
  • TED
  • 2020
image description
How AI can help shatter barriers to equality

Jamila Gordon, an AI activist and the CEO and founder of Lumachain, tells her story as a refugee from Ethiopia to illuminate the great strokes of luck that eventually brought her to her important position in the global tech industry. This makes the strong case for introducing AI into the workplace, as approaches using computer vision can lead to greater safety and machine learning can be applied to help those who may speak a language not dominant in that workplace or culture train and acclimate more effectively.

  • TED
  • 2020
  • 7 min
  • MIT Technology Review
  • 2020
image description
Tiny four-bit computers are now all you need to train AI

This article details a new approach emerging in AI science; instead of using 16 bits to represent pieces of data which train an algorithm, a logarithmic scale can be used to reduce this number to four, which is more efficient in terms of time and energy. This may allow machine learning algorithms to be trained on smartphones, enhancing user privacy. Otherwise, this may not change much in the AI landscape, especially in terms of helping machine learning reach new horizons.

  • MIT Technology Review
  • 2020
  • 7 min
  • Venture Beat
  • 2021
image description
Center for Applied Data Ethics suggests treating AI like a bureaucracy

As machine learning algorithms become more deeply embedded in all levels of society, including governments, it is critical for developers and users alike to consider how these algorithms may shift or concentrate power, specifically as it relates to biased data. Historical and anthropological lenses are helpful in dissecting AI in terms of how they model the world, and what perspectives might be missing from their construction and operation.

  • Venture Beat
  • 2021
  • 4 min
  • VentureBeat
  • 2020
image description
Researchers Find that Even Fair Hiring Algorithms Can Be Biased

A study on the engine of TaskRabbit, an app which uses an algorithm to recommend the best workers for a specific task, demonstrates that even algorithms which attempt to account for fairness and parity in representation can fail to provide what they promise depending on different contexts.

  • VentureBeat
  • 2020
Load more