AI (124)
Find narratives by ethical themes or by technologies.
FILTERreset filters-
- 10 min
- The Washington Post
- 2021
The academic Philip Agre, a computer scientist by training, wrote several papers warning about the impacts of unfair AI and data barons after spending several years studying the humanities and realizing that these perspectives were missing from the field of computer science and artificial intelligence. These papers were published in the 1990s, long before the data-industrial complex and the normalization of algorithms in the everyday lives of citizens. Although he was an educated whistleblower, his predictions were ultimately ignored, the field of artificial intelligence remaining closed off from outside criticism.
- The Washington Post
- 2021
-
- 10 min
- The Washington Post
- 2021
He predicted the dark side of the Internet 30 years ago. Why did no one listen?
The academic Philip Agre, a computer scientist by training, wrote several papers warning about the impacts of unfair AI and data barons after spending several years studying the humanities and realizing that these perspectives were missing from the field of computer science and artificial intelligence. These papers were published in the 1990s, long before the data-industrial complex and the normalization of algorithms in the everyday lives of citizens. Although he was an educated whistleblower, his predictions were ultimately ignored, the field of artificial intelligence remaining closed off from outside criticism.
Why are humanities perspectives needed in computer science and artificial intelligence fields? What would it take for data barons and/or technology users to listen to the predictions and ethical concerns of whistleblowers?
-
- 7 min
- Chronicle
- 2021
The history of AI contains a pendulum which swings back and forth between two approaches to artificial intelligence; symbolic AI, which tries to replicate human reasoning, and neural networks/deep learning, which try to replicate the human brain.
- Chronicle
- 2021
-
- 7 min
- Chronicle
- 2021
Artificial Intelligence Is a House Divided
The history of AI contains a pendulum which swings back and forth between two approaches to artificial intelligence; symbolic AI, which tries to replicate human reasoning, and neural networks/deep learning, which try to replicate the human brain.
Which approach to AI (symbolic or neural networks) do you believe leads to greater transparency? Which approach to AI do you believe might be more effective in accomplishing a certain goal? Does one approach make you feel more comfortable than the other? How could these two approaches be synthesized, if at all?
-
- 7 min
- MIT Tech Review
- 2020
This article examines several case studies from the year of 2020 to discuss the widespread usage, and potential for limitation, of facial recognition technology. The author argues that its potential for training and identification using social media platforms in conjunction with its use by law enforcement is dangerous for minority groups and protestors alike.
- MIT Tech Review
- 2020
-
- 7 min
- MIT Tech Review
- 2020
Why 2020 was a pivotal, contradictory year for facial recognition
This article examines several case studies from the year of 2020 to discuss the widespread usage, and potential for limitation, of facial recognition technology. The author argues that its potential for training and identification using social media platforms in conjunction with its use by law enforcement is dangerous for minority groups and protestors alike.
Should there be a national moratorium on facial recognition technology? How can it be ensured that smaller companies like Clearview AI are more carefully watched and regulated? Do we consent to having or faces identified any time we post something to social media?
-
- 5 min
- Venture Beat
- 2021
Relates the story of Google’s inspection of Margaret Mitchell’s account in the wake of Timnit Gebru’s firing from Google’s AI ethics division. With authorities in AI ethics clearly under fire, the Alphabet Worker’s Union aims to ensure that workers who can ensure ethical perspectives of AI development and deployment.
- Venture Beat
- 2021
-
- 5 min
- Venture Beat
- 2021
Google targets AI ethics lead Margaret Mitchell after firing Timnit Gebru
Relates the story of Google’s inspection of Margaret Mitchell’s account in the wake of Timnit Gebru’s firing from Google’s AI ethics division. With authorities in AI ethics clearly under fire, the Alphabet Worker’s Union aims to ensure that workers who can ensure ethical perspectives of AI development and deployment.
How can bias in tech monopolies be mitigated? How can authorities on AI ethics be positioned in such a way that they cannot be fired when developers do not want to listen to them?
-
- 7 min
- VentureBeat
- 2021
New research and code was released in early 2021 to demonstrate that the training data for Natural Language Processing algorithms is not as robust as it could be. The project, Robustness Gym, allows researchers and computer scientists to approach training data with more scrutiny, organizing this data and testing the results of preliminary runs through the algorithm to see what can be improved upon and how.
- VentureBeat
- 2021
-
- 7 min
- VentureBeat
- 2021
Salesforce researchers release framework to test NLP model robustness
New research and code was released in early 2021 to demonstrate that the training data for Natural Language Processing algorithms is not as robust as it could be. The project, Robustness Gym, allows researchers and computer scientists to approach training data with more scrutiny, organizing this data and testing the results of preliminary runs through the algorithm to see what can be improved upon and how.
What does “robustness” in a natural language processing algorithm mean to you? Should machines always be taught to automatically associate certain words or terms? What are the consequences of large corporations not using the most robust training data for their NLP algorithms?
-
- 5 min
- MIT Tech Review
- 2020
With the surge of the coronavirus pandemic, the year 2020 became an important one in terms of new applications for deepfake technology. Although a primary concern of deepfakes is their ability to create convincing misinformation, this article describes other uses of deepfake which center more on entertaining, harmless creations.
- MIT Tech Review
- 2020
-
- 5 min
- MIT Tech Review
- 2020
The Year Deepfakes Went Mainstream
With the surge of the coronavirus pandemic, the year 2020 became an important one in terms of new applications for deepfake technology. Although a primary concern of deepfakes is their ability to create convincing misinformation, this article describes other uses of deepfake which center more on entertaining, harmless creations.
Should deepfake technology be allowed to proliferate enough that users have to question the reality of everything they consume on digital platforms? Should users already approach digital media with such scrutiny? What is defined as a “harmless” use for deepfake technology? What is the danger posed to real people in the acting industry with the rise of convincing synthetic media?